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ABSTRACT

Theair quality modding community widely acknowledges that there are considerable uncertainties
in the emission inventories used for modeing. Nonetheless, these uncertainties are typicaly ignored in
ar qudity modding applications. Three reasons for ignoring these uncertainties are (1) uncertaintiesin
model inputs typicaly are not well quantified, (2) emissons and ar quality modeling codes are not
equipped to support uncertain inputs, and (3) methodologies are lacking that address the previous two
issues. In this paper, we describe a methodology for integrating some types of emissions uncertainties
into emissons modding. The methodology is gpplied to an air quaity modeing application, dlowing
the effects of emissions uncertainties on air quality smulationsto be characterized. To facilitate this
gpplication, the Sparse Matrix Operator Kernd Emissions (SMIOKE) modeling system has been
modified to accept Satigtical or empirica distributions describing emissons factors as well as multiple
redizations of hour-specific emissons data. SM OK E was used with these data to Smulate many
dterndive redizations of the emissons inventory. These redizations were then modeled with the
Multiscde Air Qudity Smulation Platform (MAQSIP) and the uncertainty in the air quaity modd
predictions was characterized. Computational intensity is addressed by distributing the mode runs over
acluger of inexpengve Linux computers. The paper concludes with recommendations for improving the
characterization of uncertainty in emissons inventories, with the god of making probabilistic
assessments more practical.

1 INTRODUCTION

A mgjor concern in air quality modding is uncertainty in emisson inventories (EIs). There are
fundamenta questions regarding whether Els, when used asinputsto ar quaity models (AQMs), are
aufficiently accurate and precise to provide a basis for the development and evauation of effective
pollutant control strategies. Uncertainties are an unavoidable aspect of emissioninventories and
emissons modding; one reason is that emissons data are often estimated by multiplying an emissons
factor specific to the type of source by an activity vaue. For example, county-tota emissions for
household solvents can be estimated by multiplying a per-capita emission factor (tons/person) by the
county population. In some cases, the emissons factor may have been determined through andyzing a
small number of emissons samples from only afew sources. The results therefore may not be
representative for a particular source. There may aso be uncertainties due to measurement error and
variability due to changing operating conditions and naturd fluctuations (e.g., fud impurities). One
important detail of our work isthat to smplify the methodology described here, we have not
disassociated uncertainty and variability, dthough techniques for doing S0 are available. The activity
data are another source of uncertainty. For some sources, activity vaues are easily measured or
computed; for example, the amount of gasoline discharged from a gas station can be determined as a
function of sales. In other cases, activity vaues are not 0 easily determined. An exampleis vehicle



milestraveled (VMT), which is used for esimating vehicular emissons. VMT is not measured explicitly
for each day but rather is based on alimited sample of observations from particular days. Clearly, alarge
number of assumptions are used in developing an emissions inventory; however, the effect of these
assumptions on air quaity modding effortsis not necessarily clear.

The work described here is part of alarger effort to develop, refine, and demonstrate methods for
quantification of the uncertaintiesin Els. Our god isto illudrate the benefits of characterizing
uncertainty, particularly with respect to data quaity management, research planning, air quaity
modding, and control strategy development. While uncertaintiesin meteorologica dataor modd
formation could also be accounted for, these are not the focus of the work described here. In this paper,
we describe and demongtrate an emissions modding system thet is capable of utilizing quantitetive
representations of El uncertaintiesin developing probabiligtic air qudity predictions. Such an andysisis
useful in characterizing how lack of knowledge affects modding results. Thisinformation canin turn be
used in evaluating the accuracy of mode predictions, which assesses the likdihood of achieving desired
ar qudity improvements, and identifies how resources can be allocated mogt efficiently to reduce
uncertaintiesin air quaity predictions.

2 OVERVIEW

Performing a probabilistic air quaity assessment involves multiple seps. Aninitid step isto
determine the source categories to be considered. A practica approach isto identify the source
categories (e.g., by source classification code) that contribute the highest quantity of emissons.
Knowledge about the rdaive effect of dternative pollutantsis dso vauable in identifying source
categories. The next step is to quantify the uncertainties in emissons factors and activity deta for the
selected categories. 1dedly, the data from which the emissons factors were caculated is readily
avalable. Unfortunatdy, this avalaaility is not very likdy for many source categories, snce much of
the data was generated years or decades ago and may not have been permanently recorded or
maintained. If the data can be obtained, they can be fit with a gatistical or empirica digtribution. When
using datistica didtributions, the lack of alarge number of data points often introduces uncertainty in
the estimates of the distributions parameters. Techniques such as parametric bootstrapping can be used
to quantify the uncertainty due to alack of data. If the data used to calculate emissions factors are not
reedily available, expert dicitation for characterizing uncertainty is sometimes used. Findly,
characterization of uncertainty for activity data can use approaches anadogous to those for emisson
factors.

Once uncertainties have been characterized in an emissoninventory, the next step is to propagate
the uncertainties through the emissons and air quaity models to obtain probabilistic estimates of ar
quality modd predictions. Monte Carlo (MC) smulation techniques are most commonly used for this
purpose. In MC smulation, asample is taken from the distribution for each uncertain parameter. The
combination of sampled vaues across the inventory provides a“redization” of the inventory. In this
work, the emissons redization is generated using the emissons model and evauated usng the air
qudity mode to obtain the corresponding redization of air qudity predictions. During Morte Carlo
amulation, this process of generating and evauating redlizationsis repeated typicaly 50 to severd
hundred times.

After the output redlizations have been generated, they can be evaluated to gain avariety of ingghts
into the air quaity modding results. For example, one can estimate the mean and standard deviation of
modd results such as the peak predicted ozone concentrations. One can aso andyze the air qudity
mode outputs to evauate the likelihood that air quaity standards will or will not be met. Further,
sengtivity analyses can be carried out to gpportion the uncertainty in model outputs to various uncertain



inputs. This dlows the determination of which input uncertainties have the largest impact on the mode
results, which is information that can be used to alocate resources improve the precison of modding.

In the work described here, we focus on the propagation step. In practice, this step has not been
practica for large- scde modding because of (1) the computationa congtraints associated with running
complex emissons and air quality modes up to hundreds of times, and (2) models have not generdly
been devel oped to accept probahilistic inputs. To some extent, computationa concerns can be addressed
using high performance or distributed computing. We have used the Condor software package rel eased
by the University of Wisconsin to distribute computations over a network of computers at locations,
connected by the Internet. A distributed computing environment does not address how quantifications of
uncertainty in inputs can be handled within amodel, however. For example, most emissions models are
not equipped to take as input a Satistical digtribution and its parameters for an emissions source.

One gpproach for propagation is to develop MC smulation code external to the modd. Such code
would generate multiple redizations of raw emissons files to the emissons modd, which would be used
by the emissions mode to generate the gridded, hourly emissions data needed by the air quaity model.
The process of invoking and performing emissons modding possbly hundreds of timesis
computationaly challenging, and more efficient approaches exist. One such gpproach is to modify the
emissions model to accept probabilistic specifications for emissons and activity factors. MC smulation
can then be carried out during the emissons modding instead of during the inventory building process.
Because this latter gpproach does not require building many versonsof emisson inventory files that
could be hundreds of Megabytes each, it dso provides amuch more streamlined and tractable solution.

In this context, we have implemented the ability to accept and Smulate uncertain inputs into the
Sparse Matrix Operator Kernd Emissons (SMOKE) modeling sysiem. The origind verson of SMOKE
has been more fully documented € sewhere (Coats and Houyoux, 1996). In addition to uncertaintiesin
emissions and activity factors, the modified SMOKE aso accepts descriptions of uncertaintiesin spatid
dlocation factor assgnments. SMIOKE propagates these uncertainties through main stages of emissons
data processing: inventory import, tempora alocation, spatia alocation, chemica speciation, and
merging. The resulting model-ready emissions datais output as a collection of filesinstead of asingle
file, in which each fileis used for one redization of the Monte Carlo smulation.

We have applied our approach in areal-world case sudy involving locd-scale ozone air qudity
modeling in Charlotte, North Carolina. The redesigned SMOKE system and our data collection efforts
have included VOC and NOx emissions for utility sources and nontutility point sources, on-road mobile
sources, nonroad mobile sources, and stationary area sources. In the gpplication described here, we
evauate the effects of uncertaintiesin utility emissons only. The emissons data were modeled using the
Multiscde Air Quality Simulation Platform (MAQSIP) (Odman and Ingram, 1996). No changes needed
to be made to the MAQSIP modd because it was run in its sandard form individudly for each Monte
Carlo amulation. The modd changes were dl donein the SMOKE system, as explained next.

3 SMOKE DESIGN AND APPROACH
3.1 SMOKE system overview

The SMOKE emissons processng system efficiently processes emissions data using matrix-vector
multiplication. It performs the core functions of emissions processing: the spatid alocation, tempord
dlocation, chemical speciation, and control of area-source, mobile-source, and point-source emissions,
and the generation of biogenic emission estimates. It Ao computes the eevated plume rise needed for
point sources using a modified Briggs agorithm (Briggs, 1984). The verson of SMOKE that we used in
this project contains a driver for the MOBILE5a and MOBILE5Sb modes (U.S. Environmental
Protection Agency (EPA), 1994; U.S. EPA, EPA/OMS MOBILES Vehicle Emisson Modding



Software: MOBILEBSb, available at http:/Aww.epa.gov/oms/mb.htm#mbb, 1996), and it also uses a
reorganized verson of the Urban Airshed M odel-Biogenic Emisson Inventory System, verson 2
(UAM-BEIS2) (Pierce et d., 1998). The efficient processing of SMOKE made it an appropriate choice
for handling the large number of emissons cases needed for this project. Houyoux et a. (1996) describe
this efficiency in more detall.

Figure 1 shows the mgjor SMOKE processing steps for area and point sources. As shown in figure,
the tempora dlocation, chemical speciation, and gridding steps can be performed in pardld. They are
performed before the find merge step, which computes the mode-ready emissions. For point sources
only, the layer fraction computation causes the merge step to create 3-d emissons for MAQSIP. That
step is shown as an optiona step in the figure because it applies only to point sources. For both areaand
point sources, emissons controls can optiondly be applied in the control step. The basic mobile source
processing isshown in Figure 2. In this effort, mobile sources included computing MOBILESh emisson
factors usng SMOKE and using them to compute emissions based on vehicle-miles-traveled (VMT)
data. SMOKE uses the gridded temperatures to compute source-pecific temperatures, which are used
during tempord dlocation (as shown in figure) to determine the appropriate MOBILESb emisson
factors to use for each source and hour. For mobile sources, the temperature preprocessing depends on
the gridding step as shown in the figure. The tempora alocation step includes both tempora alocation
of VMT and computing emissons from VMT and the MOBILESb emission factors. MOBILESb must
model the on-road mobile controlsin this verson of SMOKE Otherwise, the on-road mobile source
processing is the same as for other sources, and the merge step creates the model-ready emissions. We
did not include uncertainties in biogenic sources for this project, so we will not discuss the biogenic
processing in SMOKE here.

3.2 Approach and design for SMOKE enhancements

For thiswork, we developed arevised version of SMOKE that permits the propagetion of satistical
and empiricd descriptions of inventory uncertainties for area (including nonroad mobile), on-road
mobile, and point sources. Support for uncertaintiesin biogenic emissions may be added in the future.

Some major sources of emissons-modding uncertainty relevant to this work included:

Inventory emissions for area and point sources

VMT

Tempord profiles used for tempora alocation

Speciation profiles used for chemical speciation

Spatia surrogates used for spatia alocation

The assignments of the tempora profiles, speciation profiles, and spatid surrogates (e.g., not
the temporad profiles themsalves, but which monthly, weekly, and diurna profiles are sdected
for agiven source)

Layer fraction caculation

For this work, we designed changes to SMOKE to facilitate andyss and air qudity modeling that
includes two of these uncertainties. First, we consdered the uncertainty in the inventory emissons
vaues The emissons vauesin the inventory (e.g., annud emissons) were assigned parametric and
empirica probability digtributions to describe the uncertainty about them. Therefore, SMOKE needed to
be able to propagate these uncertainties through the emissions modding steps to creste multiple
redizations of the mode-ready emissions.

Second, we modified SMOKE to address uncertainties in the assgnment of spatia surrogates for
gpatid alocation of area, non-road mobile, and on-road mobile sources. We permitted each surrogate
assignment to include probability information about which spatial surrogete is the best representation of



the spatia alocation of emissonsfor each assgnment. For example, the standard assignment for dry
cleaning emissonsis to use the population spatia surrogate in dl cases. In our gpproach, one could
assign a 50% probability that the population surrogeate is the most gppropriate surrogate and a 50%
probability that the housing surrogate is the most appropriate. As many probabilities and surrogates can
be assigned as there are data available to support such assgnments.

To create averson of SMOKE that supports inventory emission uncertainties, we addressed three
magor desgn eements. (1) developing an approach for providing the uncertainties to SMOKE since they
are not available with standard inventories, (2) devisng anew emissons processng arrangement that
would be both effective and efficient when needing to generate 50 or more emissions redizations, and
(3) ensuring aresulting system works both for slandard emissions processing and for processing for
uncertainty. We describe each of these dements in the paragraphs below.

For the first design eement, we devised anew emissonsfileto alow emissons modelersto
provide the quantitative descriptions of uncertainty about the inventory. This gpproach alows emissons
modelers to assgn uncertainty information about any exigting inventory, without having to change the
actud inventory files a dl. The same inventories can be used for both determinigtic (i.e.,, without
uncertainty) modeling and stochastic modeling (i.e., with uncertainty), and the type of modeling that is
done depends on the presence of the additiond inventory uncertainty file. Thisfileis cdled the
AUNCERT, MUNCERT, or PUNCERT file, depending on whether the file isfor area, mobile, or point
sources. Thefile includes sections for parametric uncertainty profiles, empirica uncertainty profiles, and
assgnment of those profiles to the inventory by country/state code, county code, and/or source category
code (SCC). For point sources, plant identification information can aso be used to assign the uncertainty
profiles. The parametric informetion provided in thefile defines Satisticaly characterized uncertainties
for the normd, lognormal, gamma, and Weibul distributions. The empirical assgnments, by definition,
support any shape distribution to describe uncertainty about the inventory emissions.

Figure 3 provides an example of an AUNCERT file. In the first section, the
/[FACTOR ASSIGNMENT/ packet assigns the parametric (Meth=P) and empirica (Meth=E) to severd
SCCsin theinventory. It is not necessary to provide uncertainty information for all SCCs Inthis
example, country/state/county code (CHIP) is not used as a basis for making the assgnments, because no
country, state, or county-specific data were available to judtify such assgnments. The distributions are
assigned by name; for example, the SOLUTILMISC digtribution is assigned to SCC 2301030000 for the
ROG pollutant. The Approach column indicates when to resample the emissons vaue from the
probability digtribution. The four settings one can dect to include for the Approach are the following:

S: Usesthe same emissons adjustment for al inventory sources that metch the assgnment, and
different adjustments for each redization. Adjusment of emissons for eech redization
therefore occurs once per assgnment (e.g., by SCC) only once for the entire episode.

I:  Usesindependent adjustments of each inventory source that matches the assgnment. In other
words, a new sampleis taken from the distribution for each source in the inventory.
Adjustment of emissions for each redlization occurs once for each source that matches an
assgnment and only once for the entire episode.

ST:Thesame asthe®S’ adjusments, but emissions are readjusted for each hour of the episode
instead of once per episode.

IT: Thesameasthe“l” adjustments, but emissions are readjusted for each hour of the episode,
instead of once per episode.

We have created Figure 4 through Figure 6 to help explain our approach for the second major
design eement: devising a new emissons processing arrangement that would be both effective and
efficient when needing to generate 50 or more emissons redizations. These figuresillugtrate the flow of
SMOKE programs and some input, intermediate, and output files that are relevant to this explanation. In



Figure 4, we provide the revised area- sources processing gpproach for handling uncertain inventories.
The Smkinven program imports the inventory from the inventory file, ARINV, and it optiondly reads
the uncertainty information from the AUNCERT file described above. Since the uncertainty input
information is optiond, dl uncertainty-based stepsin Figure 4 include the optiona designation;
nevertheless, they are required if one wants to include uncertainty in the emissions processing. The
AUCOUT file identifies the uncertain sources, the AUCEOUT file contains the empirical distribution
information, and the AUCPOUT file contains the parametric distribution detailed. The Grdmat and
Spemat programs perform respectively the spatid dlocation and chemicd speciation steps asin the
origina verson of SMOKE. The Tempora program performs the tempora alocation and performs the
sampling of emissons for each source, based on the ingtructions in the AUNCERT file. The Tempora
program generates both the standard hourly emissions file ATMP and Nt number of ATMPU files,
where Nt isthe number of redlizations defined by the SMMIOKE user. To conserve disk space, the
ATMPU files contain only those sources that are being trested as uncertain. The ATMP file hasthe
emissons for the uncertain sources zeroed out, to prevent double counting when the ATMP data and
ATMPU data are recombined for each redlization. The Smkmerge program creates the hourly, gridded,
gpeciated model-ready fileswith al “certain” sourcesin the AGTS L file shown in the figure & the top
right. The Smkmerge program is aso run in “uncertain” mode and iterates through Nt redizations to
create an AGTS L fileincluding the uncertain source emissons for each redization. SMOKE' s Mrggrid
program, not shown on the diagram, is then used for each redlization to cregte the modd-ready
emissons for input to the MAQSIP modd.

Figure 5 provides asimilar flow diagram for processing point sources. The differences between this
figureand Figure 4 are (1) the file names (start with “P’ for point instead of “A” for areq), (2) it includes
the optionda hour-specific input file PTHOUR and the resulting hour-specific intermediate file PHOUR,
and (3) it includes the Laypoint program for computing the layer-fractions in each hour. The 3-d
PGTS L files are computed by the Smkmerge program for the “ certain” inventory sources at the top
right as well as the uncertain sources for redlizations 1 through N+, shown at the bottom right. Mrggrid
aso combines these files for each redization to provide the mode-ready point source inventories.

FHndly, Figure 6 provides the on-road mobile source processing steps. The differences between this
figure and Figure 4 are (1) the file names (start with “M” for mobile insteed of “A” for areq), and (2) the
figure includes the dternative gpproach to computing emissions usng MOBILESb emisson factors. As
mentioned in describing Figure 2 aswell, the Grdmat spatid dlocation step is necessary prior to
preprocess ng the temperature in the meteorology files, which is done using the Premobl program. This
is because the Grdmat program creates an “ungridding matrix,” MUMAT, which facilitates the
computation of source-based temperatures from the gridded meteorology to use in MOBILESh. The
Premobl program creates two intermediate files (not shown) that are used by the Emisfac program,
which drives the MOBILESb program — running it as many times as necessary for the temperatures and
MOBILEBb input scenarios provided in a separate input file, which is aso not shown on the figure. The
Emisfac program stores the emisson factorsin the MEFSND and MEFSD files. The Tempora program
computes the on-road emissions from these emisson factors and from the VMT in the MOBL inventory
file, and thenit applies emissions adjustments dictated by the MUCOUT, MUCEOUT, and MECPOUT
uncertainty intermediate files. As was done for area and point sources, the Smkmerge program is used
twice: once to compute emissons for the “certain” sources, and once for dl redizations of the uncertain
sources. The Mrggrid program is used to combine the arealnonroad, biogenic, point, and mobile files for
eech redization for the sngle 3-d emissons file input to the MAQSIP modd.

4 ADDRESSING COMPUTATIONAL REQUIREMENTS

Carrying out a Monte Carlo smulation involving regulatory-scae emissons and ar qudity modds
isacomputationaly chalenging task. For example, the ar quality modeling episode described later in



this paper required approximately 11 hours to execute on a 2 GHz Linux computer with 512 megabytes
of memory. Evauating 50 redizations on that computer would therefore require approximately 23 days.
Our goa wasto evauate 50 redlizations for up to 12 different scenarios. Clearly, thisisimpracticd on a
single computer configured as we have described. Another option is to use multiple computersto carry
out the runs. In its Smplest form, this requires ingtdling the models and data on each computer, setting
up batch files, starting execution, monitoring execution, then compiling al the resultsto asingle
computer for analysis. This process is very tedious and labor intensive.

As an dternative, we chose to implement a distributed computing gpproach based upon the
University of Wisconsin's Condor Project and software (http://www.cs.wisc.edu/condor). Weingdled
the Condor software on 9 Linux computers. These computers were located at NC State University in
Raeigh, NC, and at MCNC, in Research Triangle Park, NC (gpproximately 20 miles apart). The two
clusters were connected only viathe Internet. Five of the computers were 450 MHz computers with 256
megabytes of memory. The other four were more powerful, ranging from 1.8 to 2.4 GHz, each with 512
megabytes of memory. Some of the computers were dual-boot systems, and these were unavailable for
use during certain times of the day; this was eadily handled by the Condor software.

One of the computers was configured to be the master node of the ad- hoc cluster. This computer
had alarge disk drive and was able to store the modd inputs and outputs. From this machine, we
submitted the modeling jobs to the Condor cluster, and the Condor software then determined which of
the cluster’ s computers were available and delivered the model and requisite data to the available
machines. The Condor software monitored the MAQSIP execution and retrieved the MAQSIP resultsto
the master node upon completion of each modding “job.” If execution was interrupted on a given
meachine, the job was resubmitted when another machine became available. The Condor software
supports afeature called break-pointing, in which interrupted jobs can be restarted where they were
interrupted, athough we did not utilize this feeture in this project. Our Condor-based distributed
computing approach was successful in decreasing the time requirements for evaluating 50 emissons
redizations from 23 daysto lessthan 4 days.

5 APPLICATION

In this section, we describe an gpplication of our approach to a problem involving uncertaintiesin
utility emissons. This section includes descriptions of the modding scenario, the emisson inventory,
and the MAQSIP smulations.

5.1 Example modeling case

We performed our modeling on aloca- scale ozone modeing application for Charlotte, North
Carolina. Charlotte has been close to noncompliance for the 1-hour ozone standard, and is expected to
be out-of-compliance with the 8-hour standards. The modeling episode used in this exercise had
previoudy been used by the state of North Carolinaiin its 1-hour State Implementation Plan (SIP)
modeling efforts. The domain is represented using a4-km Lambert conformd grid, as shown in Figure
7. The detailed parameters of the case are the following:

Grid projection: Lambert Conforma with Alpha=30, Beta=60, Gamma=-90, and center at
(-90,40).

Domain: Origin at (672, -564) kilometers with 63 rows by 63 columns and 4-km square grid
cdls. (Figure 7)

Episode; Six days, from July 10™ to duly 16™", were modeled using one six-day (145-hour) period.
The episode startsand ends at 12 GMT.



M eteor ology data: 1995 meteorology filesin MCIP output format were generated originaly by
MCNC using the Pennsylvania State University (PSU)-Nationa Center for Atmospheric
Research (NCAR) Fifth-generation Mesoscale Model (MMY5) (Grell et ., 1994).

5.2 Emission Inventory

The emisson inventory was the 1995 North Carolina (NC) Department of Environment and Natura
Resources (DENR) inventory for SIP modding. The inventory includes the typical four emissons
source categories (area, biogenic, mobile, and point sources), and data for nitrogen oxides (NOX),
reactive organic gases (ROG), and carbon monoxide (CO). The area-source inventory in this case
includes the nonroad mobile sources, while the mobile inventory includes on-road mobile sources only,
usng VMT and MOBILE5b emission factors computed using SMOKE. The point source inventory
contains hour-specific emissions from the 1995 Continuous Emissions Monitoring (CEM) database of
NOx for North Carolinaand South Carolina dectric generating utilities (EGUS). Table 1 ligsthe EGU
facilities for which we used the CEM data.

To this inventory, we collected the following information about uncertainty in the inventory:

Parametric and empirica probability distributions of uncertainty on the average-day emisson
vaues for NOy and VOC (Frey and Bammi, 2002; Frey and Li; Frey and Zheng, 2002; Frey and
Zheng, 2002

Empirica probability digtribution for uncertainty in the hourly NOx CEM data to use for both
base-year and future-year emission estimates (Abdd-Aziz and Frey, 2002)

The case that is described in this paper includes only the uncertainty characterization from andyss
of the CEM datafor the EGUs. We did not complete the testing of the SMOKE system and the MAQSIP
runs for the other data available for area, nonroad mobile, on-road mobile, and non-utility point sources
intimeto include in this paper.

Based on andysis of the CEM data (Abdd-Aziz and Frey, 2002), 50 redlizations of the PTHOUR
input file were created for input to SMOKE. These files were used to create suites of 50 redlizations of
model- ready inputs with uncertainty characterized for the EGU sources only; area, nonroad mobile, o+
road mobile, non-utility point sources, and biogenic sources were modeled determinigticaly using the
vauesfrom NC DENR'’s SIP modding efforts.

5.3 MAQSIP simulations

We performed two applications of the probabilistic modding approach usng MAQSIP with a
Carbon Bond 4 (CB4) configuration, the grid shown in Figure 7, and 12 modd layers. The verticd
structure with a nonhydrogtatic sgma- P configuration with and modd top at 100 mbar and asigma level
configuration of 1.0, 0.995, 0.987, 0.974, 0.956, 0.936, 0.913, and O.

In the firgt gpplication, 50 redlizations were evauated for a case in which uncertainties in utility
NOx emissions were evaluated usng atime-series analysis approach. It was assumed that there was no
spatia correlation between stack emissions (including those at the same plant). In the second gpplication
of 50 redizations, spatid correlations were considered. Each eva uation required approximately 5 days
to carry out using the 9 computers that were available within the Condor network. The outputs were then
compiled and analyzed to evauate how consdering uncertainties in utility emissons affected the
likelihood of achieving the 1- and 8-hour ozone standards.



6 RESULTS

In Fgure 8, we provide a plot of the maximum hourly ozone concentrations across the episode for
the dependent - uncertainties case. The analyss performed on these results concluded that the dependent
case gave sgnificantly different results from those of the independent case. Since the dependent caseis
more refined and the results were subgtantidly different from the independent case, we have concluded
that including the uncertainty dependenciesin such andysesis necessary. In addition, including the
dependencies among the plants played a critica role in assessment of the overal uncertainty in ozone
for andyses involving the 1-hour ozone standard. Further andysis showed that the range of uncertainty
in ozone vaues soldy atributable to utility NOy emissions can be as large as large as 20 ppb or more.
Andysis of the results of attaining the 8-hour ozone standard showed thet the uncertainty in the utility
NOy emissons did not have an impact on whether NC was out of attainment or not. The predicted ozone
exceedances were so widespread that the variation in utility NOy emissons did not affect the 8-hour
nonattainment designation. These results are presented in full in (Abdel-Aziz and Frey, 2003).

Since adifference of up to 20 ppb has been observed by including the emission inventory
uncertaintiesin utility point sources, we can infer that congdering emisson uncertainties are quite
important. A difference of 20 ppb in predicted ozone concentrations could mean the difference between
demondtrating 1-hour 0zone attainment and not demongtrating it. Decision makers who need to assess
atainment designations could be much better informed by taking such information into cong deration.

Additiondly, this 20 ppb difference resulted from uncertainties in one of our most certain emissions
data. Thisis because the CEM data are measured on an hourly basis and provided asinput to air qudity
modds. Uncertainties in area sources, nonroad sources, on-road mobile sources, non-utility point
sources, and biogenic emissons are likely to be even larger. In many cases, emissons from these other
sources contribute to the overdl prediction of ozone at least as much as do utility NOy emissions.
Therefore, consderation of these uncertainties may lead to even greater ranges of predicted ozone
concentrations.

7 CONCLUSIONS

We conclude with recommendations for improving the characterization of uncertainty in emissons
inventories, with the god of making probabilistic assessments more practica. We have demonstrated
that a sysem now exists to include some sources of emisson uncertaintiesin air quality modeing.
These uncertainties can have an impact on demondtrating attainment of the 1-hour ozone standard. The
uncertaintiesin the CEM data that we consdered in thiswork are likely to be the smalest of any
emissions category, because they are measured emissions vaues. We anticipate that when we use the
system for uncertainties on other source categories, much larger impacts on air quaity modeing results
will be observed.

Now that we have established a practical gpproach to including uncertaintiesin emissons
processing, and other work has demonstrated that the impact of including these can be sgnificant, the
next reasonable step is gaining more widespread use of such an approach. More widespread use would
lead to air quaity modelers questioning the sources of uncertainty that cause uncertainty in the outputs
of their models. Such questioning would utimately lead to identifying inventory uncertainties and
targeting those inventory improvements that can best reduce uncertainty inair quaity model predictions.
It would a0 lead to more informed decision-making about air qudity improvements that can be
expected by emission changes resulting from emission controls.

A sgnificant roadblock to applying the techniques described here to other casesis the quantification
of uncertaintiesin other regions. We have targeted inventory uncertainties that are specific to the sources
that play amgor role in the Charlotte air quality modding. Other regions of the country may have very



different key sources, and emissons from those sources will need to have quantitative assessments of
uncertainties to be able to use our approach. Those efforts are likely to find the same problems with data
collection that was found in this project. To help amdiorate this problem in the future, dl data collection
efforts undertaken to create revised emission factors and activity tota's should be performed in such a
way that the data can be used for analysis of data uncertainties. Thisincludes developing specifications
that result in the recording of information to describe what data were collected, how the data were
collected, and how the data were documented, stored, and made available to the public. If the data can
be collected and maintained in such away that facilitates caculation of uncertainty estimates about the
data, an uncertainty-based approach in modeing applications will be much more practicd in the future.

Findly, we have nat incdluded dl emisson modding uncertainties in this effort. The uncertainties
associated with tempord dlocation, chemical speciation, emission controls, and computation of layer
fractions could be just aslarge if not larger than the uncertainties considered in this work. Once the use
of the uncertainty-enabled SMOKE system becomes more widespread and the benefits of including
uncertaintiesin air quaity modding more widdly redlized, it may be useful to make additiona
modifications to the system to include these other uncertainties. In addition, the existing system is based
on MOBILESb, which has since been replaced by MOBILEG in newer versons of SMOKE. Thetwo
versions should be integrated to make uncertainty anadysis using MOBILESG possible aswell. Also, the
uncertainties in biogenic emissons, which play alarge role in ozore formation in the Eastern U.S,,
should be included to dlow air quaity modeersto establish amore redigtic picture of the range of
impact biogenic emissons have on ar quality models.
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10 TABLES
Table 1: Average daily emissons and locations for power plants
L ocation Average Daily
Name State (Row, Cal) Emissions (t/d)
Allen NC (23,33 60.4
Buck NC (38, 45) 244
Cliffsde NC (22, 16) 50.5
Belews Creek NC (55, 50) 286.9
Dan River NC (61,57) 15.4
WSLee SC 6,2 22
Marshall NC (34,33 1454
Riverbend NC (27, 33) 249
HB Robinson SC (3,54 10.8
11 FIGURES

Figurel: SMOKE emissons processing steps for area and point sources

Temporal Hourly |}
Allocation Emissions |\'

o Speciation \ Model -ready
Speciation ) Matrix . CMerge )I Emissions

Import Inventory
Inventory Vectors

Gridding |/
\ Matrix__|/
N —— S —— !
L 2 ‘o1 Control |
VoMol matrix |
C Program C—/ File —p» Showsinput or output

2222 Optiond Program —_"_7 Optional File  ---% Shows optional input or output



Figure 2: SMOKE processing steps for on-road mobile sources
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Figure 3. Example of an AUNCERT file

/ FACTOR ASSI GNIVENT/
# CFIP SCC CPOL METH NDI ST APPROACH

000000 2301030000 ROG P SCLUTILM SC S
000000 2301040000 ROG P PETROLSTOR S
000000 2401001000 ROG E ONE ST
000000 2461021000 ROG E TWO ST
000000 2465900000 ROG E THREE ST

| ENDY

# NDI ST TYPE NUMP  PARML PARM
| PARAMVETRI C/  CBASPHALT N 2 1. 000 0. 240
| PARAMVETRI ¢/ OPENBURN L 2 0. 003 0. 353
| PARAVETRI ¢/ M SCPRCDS N 2 1. 000 0. 040
| PARAVETRI €/ ARCHCOAT N 2 1. 000 0. 058
/| PARAVETRI ¢/ SOLUTI LM SC N 2 1. 000 0. 100
/ PARAVETRI ¢/ SFCCOATWOOD G 2 24. 560 0.410
| PARAVETRI C/ GASSERVSTAT N 2 1. 000 0. 140
| PARAMETRI ¢/ PETROLSTOR N 2 1. 000 0. 150
| PARAMVETRI C/  WASTEDI SP N 2 1. 000 0. 200
# TYPE NDI ST

/| EMPI RI CAL/ S ONE

# EFVAL PROB

0. 83 0. 001

0. 84 0. 001

0. 84 0. 001

0.85 0. 001

(rmore renoved for brevity in docunent)
| ENDY




Figure 4: SMOKE programs and files for processing with uncertain inventories for area sources
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Figure5: SMOKE programs and files for processing with uncertain inventories for point sources
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Figure 6 SMIOKE programs and files for processng with uncertain
inventories for on-road mobile sources
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Figure 7: Charlotte test domain
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Figure 8: Maximum hourly ozone levels & each grid cell for dependent case
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